DFA Examples
 Lecture 5 Section 2.1

Robb T. Koether
Hampden-Sydney College

Fri, Sep 2, 2016

Outline

(9) Examples
(2) Assignment

Outline

(9) Examples

(2) Assignment

Examples

Example (Regular languages)

Design finite automata that will recognize the following languages over $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.

- All strings in which each \mathbf{a} is followed immediately by \mathbf{b}.
- All strings that contain aba or bab.
- All strings that contain aba and bab.

Examples

Example (Regular languages in $\mathrm{C}++$)

Over the alphabet of ASCII symbols.

- All strings that represent C++ identifiers.
- All strings that represent C++ ints.

Examples

Example (Binary Addition)

- Design a DFA that will recognize mathematically correct binary addition problems.
- For example:

$$
\begin{array}{r}
10110 \\
00100 \\
\hline 11010
\end{array}
$$

- The input symbols are triples of binary digits (000, 001, 010, etc.), representing the columns.
- Read the columns from right to left.

Examples

Example (Binary Addition)

- Design a DFA that will recognize mathematically correct binary addition problems.
- For example:

$$
\begin{array}{r}
10110 \\
00100 \\
\hline 11010
\end{array}
$$

- The input symbols are triples of binary digits (000, 001, 010, etc.), representing the columns.
- Read the columns from right to left.
- Can we also process them from left to right with a DFA?

Examples

Example (Binary Multiplication by 2)

- Design a DFA that will recognize mathematically correct binary multiplication by 2.
- That is, given two binary numbers, does the second one equal 2 times the first one?
- For example, $11 \times 2=22$:

$$
\begin{aligned}
& 01011 \\
& 10110
\end{aligned}
$$

- The input symbols are pairs of binary digits $(00,01,10,11)$, representing the columns.
- Read the columns from right to left.

Examples

Example (Binary Multiplication by 2)

- Design a DFA that will recognize mathematically correct binary multiplication by 2.
- That is, given two binary numbers, does the second one equal 2 times the first one?
- For example, $11 \times 2=22$:

01011
10110

- The input symbols are pairs of binary digits $(00,01,10,11)$, representing the columns.
- Read the columns from right to left.
- Can we also process them from left to right with a DFA?

Examples

Example

Examples

Example (Binary Multiplication by 3)

- Design a DFA that will recognize mathematically correct binary multiplication by 3 .
- That is, given two binary numbers, does the second one equal 3 times the first one?
- For example, $13 \times 3=39$:

> 001101
> 100111

- The input symbols are pairs of binary digits $(00,01,10,11)$, representing the columns.
- Read the columns from right to left.

Examples

Example

Examples

Example (Binary Multiplication by 5)

- Design a DFA that will recognize mathematically correct binary multiplication by 5 .
- That is, given two binary numbers, does the second one equal 3 times the first one?
- For example, $19 \times 5=95$:

> 0010011
> 1011111

- The input symbols are pairs of binary digits $(00,01,10,11)$, representing the columns.
- Read the columns from right to left.

Examples

Example

Examples

Example (Binary Multiplication by 6)

- For any fixed integer n, can a DFA recognize multiplication by n ?

Outline

(1) Examples

(2) Assignment

Assignment

Assignment

- Section 2.1 Exercises 11abd, 12, 13, 14, 16, 19, 22, 28.

