DFA Examples

Lecture 5 Section 2.1

Robb T. Koether

Hampden-Sydney College

Fri, Sep 2, 2016

Outline

Examples

Assignment

Outline

Examples

2 Assignment

Example (Regular languages)

Design finite automata that will recognize the following languages over $\Sigma = \{ {f a}, {f b} \}.$

- All strings in which each a is followed immediately by b.
- All strings that contain aba or bab.
- All strings that contain aba and bab.

Example (Regular languages in C++)

Over the alphabet of ASCII symbols.

- All strings that represent C++ identifiers.
- All strings that represent C++ ints.

Example (Binary Addition)

- Design a DFA that will recognize mathematically correct binary addition problems.
- For example:

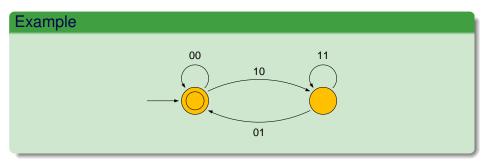
- The input symbols are triples of binary digits (000, 001, 010, etc.), representing the columns.
- Read the columns from right to left.

Example (Binary Addition)

- Design a DFA that will recognize mathematically correct binary addition problems.
- For example:

- The input symbols are triples of binary digits (000, 001, 010, etc.), representing the columns.
- Read the columns from right to left.
- Can we also process them from left to right with a DFA?

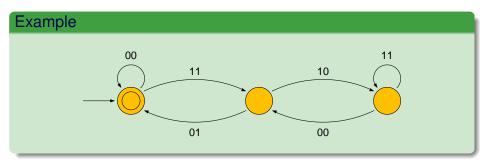
Example (Binary Multiplication by 2)


- Design a DFA that will recognize mathematically correct binary multiplication by 2.
- That is, given two binary numbers, does the second one equal 2 times the first one?
- For example, $11 \times 2 = 22$:

- The input symbols are pairs of binary digits (00, 01, 10, 11), representing the columns.
- Read the columns from right to left.

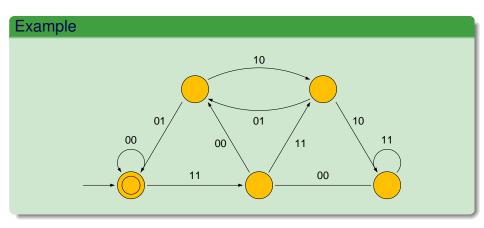
Example (Binary Multiplication by 2)

- Design a DFA that will recognize mathematically correct binary multiplication by 2.
- That is, given two binary numbers, does the second one equal 2 times the first one?
- For example, $11 \times 2 = 22$:


- The input symbols are pairs of binary digits (00, 01, 10, 11), representing the columns.
- Read the columns from right to left.
- Can we also process them from left to right with a DFA?

Example (Binary Multiplication by 3)

- Design a DFA that will recognize mathematically correct binary multiplication by 3.
- That is, given two binary numbers, does the second one equal 3 times the first one?
- For example, $13 \times 3 = 39$:


- The input symbols are pairs of binary digits (00, 01, 10, 11), representing the columns.
- Read the columns from right to left.

Example (Binary Multiplication by 5)

- Design a DFA that will recognize mathematically correct binary multiplication by 5.
- That is, given two binary numbers, does the second one equal 3 times the first one?
- For example, $19 \times 5 = 95$:

- The input symbols are pairs of binary digits (00, 01, 10, 11), representing the columns.
- Read the columns from right to left.

Example (Binary Multiplication by 6)

• For any fixed integer n, can a DFA recognize multiplication by n?

Outline

Examples

Assignment

Assignment

Assignment

• Section 2.1 Exercises 11abd, 12, 13, 14, 16, 19, 22, 28.